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ABSTRACT

Presented la this report are oWld nIaJ j.:rurIation ej.:

degree of freedom equations of motion and tuciir U-,riva••Ls.

tlngnus force and moment were considered neji,,,iule and L1oJL

included in this derivation, however, when desired they can

be incorporited in the existing models. Definitio~ns oi control

forces gravityo thrust and damping terms are presented in general

form so that various control schemes and particular functions oe

the terms can be utilized without estensive modification to the

equations of motion. These equations may be programmud on a large

scale digital or anslog computer.

Mhe majority of the work presented herein woa developed for

previous programs and adapted for use in the Penetration Aids Prograw

under Air Force Contract AV404&)4)-25.
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The object of this report 1:; Li uerivw and pre;ve:lt, ,,i.xL-I xe-o•-,L'c Ic.

equations of motion for a ridid ba!llctic mis-iWe.

DMfIOIVJTION:

light mechanics problems involving non-spinning vehicloa csn be solved,

in general, with dynamical equations which are independent of the vebicle's

poirnt mass trajectory. In the spinning body problem, however, the orientation

of the vehicle and its motion are mutually related as a result of aurodynamic

and inertial coupling ands therefore, must be studied with a six-degree-of-freedom

model. This report presents the derivation of several f Sx-deree=of-reedom

models for a general problem. It has been assumed ;n this derivation that the

earth is spherical and non-rotating and that body spin rate., are small enough

to neglect Manus forces.

The c.g. fixed part of the motion of the body is exprecsed non-holonomically,

in equations (3), as dynamical equilibrium auout any three riL.ht-handed,

orthogonal oartesian axes fixed in the body. 'lt~e coordinatetu, p~q. and r, of

equations (3) are known classically a the rectilinear, but ncaA--b-lonomic

coordinates of rigid body rotation dynamics. These coordinate:s can be expressed

in terms of holonomic, but curvilinear coordinates such as Ealerian Anles.

Equations (4) represent transformation or p,q, and r to the particular E'uleriau,

Anglers ;PJ #0 p and 0- By menins ol trunsformation (4), the dynamical

equilibrium expressed non-holonomically by equations (3) can •bt re.exprestced

holonomically as It is in equations (5). The dynamical e(Lation. lor body rotution

are non-holonomic in p,q, and r becaucse tue inertia term.• in (3) :&re only once

integrable without the adjunction of equation• (4).
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Immediately subsequent to equations (4), in this report, the question of

what coordinates to use in decided. Two approaches, designated moment derivation

A and moment derivation B, are adopted. The starting points for these are

equations (5) for A and equations (3) for B. In both "derivations", the applied

torque terms are expressed in terms of Eulerian Angles, ý , 9 , and 0 .

Only in A, however,, are the inertia terms also expreused in ý, 10 ,arnd

An interim result in A is equations (18) which are a direct combination of the

inertia terms of equations (5) with the applied torque terms of equations (17).

Equations (19) through (25) are concerned with the translational equations

of motion of the body in the space-fixed coordinates, x, y, and z of translation

and in the space-fixed coordinates ; p 19 , und 6 of orientation. Equations

(18) together with equations (25) constitute a complete set of holonomic, but

non-linear, dynamic, six-degree-of-freedom equations of motion of the rigid body

in the all-space-fixed coordinates x, y, z, , B , and * Because the

individual rotation equations of this system represent dynamical equilibrium of

components along body-fixed axes, only constant-valued second and product moments

of . nerti. occur. E-U.t..r. (,8) plus equations (25), as a system, are incomplete

in that flexible-body degrees-of-freedom are excluded and are inexact in that

(1) magnus forces are neglected and (2) a spherical, non-rotating earth is assumed.

Further development under m ment derivation A is desirable because bodies

either symmetric about the roll axis or nearly symmetric about the roll axis are

a frequent object of dynamical analysis. In the translational degrees-of-freedom,

bodies with roll symmetry can be governed no more simply than by equations (such

as equations (25) which govern unsymmetrical bodies. In the rotational degrees-

of-freedom, however, a form sanpler than equations (18) is possible for the roll

symmetric body. Such symplific-atica obtains by the following reasoning. Instead

of equations (18) which represent dinamic equilibrium of components of applied



torque along body..fixed axe$ with components of t~je applicable, reactive, inertia

torque# along tbe same aixes, equations itill based on , 9 p and 40 but

specifying dynamical equilibrium ofJ corresponding components along any suit-

ably limited set of three axes can be used with equal efficacy to fix the

rotational behavior of the unsymmtrical body. In general,, a (pre-solution)

choice of component axes fixed-in-space tends to produce an inertiaily uncoupled

set of equations, but also leads to variable se~cond and product moment of Inertia

coafficients. Constanlt-inertia-coefficient equations applicable to the unaymmetric

boy require a choice of component axes., such as that choice resulting In equations

(18),. which follow the body in yaw,. pitch,, and roll. For bodies syummtrical

to t&t roll axis., a choice of component axes which follow the body only in yaw

and pitch gives constant-inertia-coefficient equations with a form loes inertially

coupled than equations (1v'). iThe x1., yl, and z' axes system follows the body in

yaw., pitch., and roll while the xl, y1 ., and z1 axes system follows the body only

in yaw and pitch. Equations (26) express, for any static moment vector., components

along the Instantaneous xl, y1 , and zaxes in terms of components along the

instantaneous x', y', and z' axes. Application of equations (26) to the inertia

torque terms and to the applied torque terms of equations (18) yields equation

o f dynamic equilibrium in rotation about the x, , y1 , and '1 axes. These

equations are valid for the unsyimmetric body. Subsequent specialization to the

roll symmetric body is readily accomplished by setting every second moment of

inertia about any axis parpendicu1rkr to the roll axis equal to a sinale value,, I,,

and by setting all1 product moments of inertia equal to zero. The result is

equations (27) which are exact for the roll synmetric body in the same sense that

equations (18) are exact for the unsyinetric body. Equations (25) together with

equations (27) constitute a complete set of holonomic, but non-linear,, dynamaic#

six-degpee-of-freedom equations of motion of the roll-symmetric, rigid body in

the all-space-fixed coordinates x., y, zP and B ecause the

individual rotation equations of this system represent dynamical equilibrium of

30



components along axes which follow the body in yaww and pitch, and because they

are based on the assumption of roll-symmetry of the body, only constant valued

second moments of inertia occur aud product moments of inertia do not occur At all.

Continued development under moment derivation A consists of forming pertur-

bation equations of motion from the system composed of equations (25) together

with equations (27). This is accomplished by subtracting equations corresponding

to a standard, zero angle of attack trajectory from equations (25) and (27).

For this standard trajectory, equations (25) and (27) reduce to equations (28).

When equations (28) are subtracted, then, from equations (25) and (27), the

result is equations (29) which are the desired perturbation equations of motion.

For applications to roll-symmetric bodies and where the yaw angle, 4 , and

the miscellaneous angles and A are small enough to linearize,

equations (29) reduce to the (approximate) equations (30). Equations (31)

throughI (34) are concerned with introducing the parameters OK and O'y and

with further Ilinearization of equations (30). Equations (34) are the final

result under moment derivation A and represent approximate equations of motion

for the roll symmetric body. Assumption& incorporated in equations (34) and

not incorporated in equations (30) are that ( -- ),

and 5 are small enough to linearize.
V

Under moment derivation B, only the rotation equations are treated. The

translational equations are the same for B as for A. Equations (35) are a set

of three, non-holonomic, six-degree-of-freedom equations for dynamic equilibrium

of torque components along the xV, y', and z' axes system in nine coordinates,

p, q, r, x, y, z, ?/, I , and 9• . Together with the three translational

equations (25), and with the three "constraint" equations (4), equations (35)

form a complete set of nine, non-holonomic, six-degree-of-freedom, equations of

4.
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notion applicable to the general, unsymetric, rigid body. Equation (35) are

formed by setting the applied torque term of equations (17) equal to the reactive,

inertia torque terms of equations (3) and represent dynamic, rotational equilibrium

about axes which follov the body in yaw, pitch, and roll.

For the roll symetric body in motion linearizable with respect to 4,

/A , (eJ,.Z 2, and., equations (36) supplant

equations (35) for expressing rotational equilibrium and equations (34a), (34b),

and (34c) supplant equations (25) for translational equilibrium. Equations (36) differ

from 314p 34e., and 314f, not only becaus;e of the use of p, q, and r in expressing

the reactive Inertia terms, but also because equations (36) represent dynamic

equilibrium about axes which follow the body in yaw, pitch. and roll while

equations 34•, 34e, and 34f represent dynamic equilibrium about axes which follow.

the body only in pitch and yaw.

COECIMICTIS:

It is concluded that this report presents useful forms for the following

sets of equations.

Eqns. (18) Total rotational equations in terms of Eulerian angles.

Eqna. (25) Total translational equations along space fixed axes.

Eqps. (29) Simplified six-degree-of-freedom perturbation equations.

Eq•n. (304) Linearized six-de,-ree-eof-freedom perturbation equations.

ieqns. (35) Total body moment equations in terms of body angular rates.

Eqns. (36) Linearized bod:; moment perturbation equations in terms

of body angular rates.

5.
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Derivation of the Equation, of Motion

The translational equations of motion are written with respect to a

spaced fixed axes system in order to measure true accelerations in fixed

space to which Newtonian law,, apply. The moment equations are written

relative to body fixed axes with origin at the center of gravity and

parallel to the axes of symmetry of the body. Body fixed axes elitninate

the need for considering the moments of inettia as a function of vehicle

orientation. The thrust, control force, gravity, and damping definitions

are general since they will be uniquely defined for each problem. The

moment or rotational equations of motion are considered first.

Section I - Rotational Equations of Motion

From reference 1 and 2 the monents of momentum of a missile about its

bndy fixed axes system are defined as:

Moments of Momentult

(a A it K - C?

From figure 1, the monents about the body fixed axes, defined as the rate of

change of moment of momentum about those axes, are expressed as:

M~oll (Body) . gehp ,-/
dt

(2) MPitch (Body) . 4hh ' +h to

6.



Substituting equations (1) into equations (2), presents the body

moment equations in the form:

(3) Mpitchi . ~~r ~ ~(~r)J'+~(ix.

Myaw 4 ( -f)3 (* r)I *+~(y1

In these equations the terms contuining the time derivatives of mment of

inertia have been neglected.

The angular rates about the body axes in terms of Eulerian angles are

shown from figure 2 to be:

At this point in the derivation a choice must be made to proceed by

either expressing body moment in terms of Eulerian angles and their rates

or in terms of body angular rates and accelerations. Both are presented,

however, the former is taken first in this re•ort= Th.e derivations will be

labeled A and B for their reEpoctive occasion in the report.

Moment Derivation A

Substituting the valuet.; af pp q, and r as defined above, and their

derivatives into equations 3, the body moment equations becomesu

7.
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SMya *

(5c)

+Jy~C..m +4 ~C-4~ aco.4L4AA -z6)A

- 4-L&jaod 9&d ) 4A

Applied oment

The total applied momnt about a body axis is comprised of an

aerodynamic force moment, a control force moment., a thrust vector

misalignment moment, and a damping moment. This can be written in equation

form as:

(6) MfV M4 ,.M. + M .met M+

1. Aertoq mic Moment

Moment is expressed in vector analysis as:

Letting AA$~' 'A
and

9.



where is the vector from the bodyCG, to the application of the aerodynamic force

and where i', J', and k" are unit vectors along the body x', y and z"

ixes,respectively.

The above cross product hus the following: components:

xaero -F~p tAack e]

(7) Mya,
0  z [gýre 

-) F(. "

%aero 2

The aerodynamic force components as shown in figure 3 are:• - ... ' •,,.-v,, F& Fx,,o

where:

•C Q-A = .€ a*tMx x4-1 , '' AND + if

With the vector transformation on figure 2, velocity can be expressed

along body axes so that FN becomes:

A & L-(±&4 [G4LU0
F ~ ~ CAOA J

f*ý (C.04~ A0s C4oiaY,/

The y'and z components are:

lO.



(8b) y0A(o

-46% Colo/•e

The mo-ent arm components are defined as:

rxis -- (CG-CP) where CG and CP are imeasured from an aft reference point

(9) ry, :z A CPy,

rz, a 'A CPz,

A CPy.and& CP2 , include the misalignment of the center of pressure and

the center of gravity.

Substituting equations 8 and 9 into equations 7, presents the applied

moment due to an aerodynamLc fbrce.

\xero

(1a It,, VI• ,+ -a
IV/c

IvI

11.



(lob)MyAero

+~ CC4o4

iVI

M•ero .
±~.-t cc..c e_*(10c) % o Do A cPy V

t(CObý Uwp4OGA)P

2. Control Force Moment

This moment is the result of control forces obtained from either reaction

Jet or external movable fins applied as in diagram 1.

yg

Diagram 1

Forces and moment arms are:

-Air. *-'. •

12.



The control mo,.ent is defined as:

MAP) 1C4ý-

1vnuating each individual cross product giveb:

Azx Fi - .(.X) F -ih 0!

A sum~tion of tho individual control wonents about tihe body axes produces

the foJlowin5 equat ion.:

(i&"a) •,Cr • -x (Fr+Fjgr=)

Fm + c(F+FX)

3. Mial~ead,.'A Thrust Vector i•n

The 4ssent produced by a aanted, displaced thrust vector can be derived

as follows:

(13.

Am X F- F. X. F. hA



CO

IfI

Fr •Diagram 2 AP

The moment is expressed as:

where from dwiram 2;

Ar 0-A r*'A rOAdO

Taking the cross product, the moment becomes:

(15) Nth

The body %xes components of the moment due to the thrust vector are then:

( M6) ~pitch . A~ 7ff Cvr vG *X r4V

14..



1*Damtping Moment

It remains only to define the aerodynamic damping moments about the X*

Y and Z' axes and these are 1d4e, MY, and td4± respectively.

The total applied moment is the sum of the individual moments derived

previously, for equation 6.

Therefore:

Body roll moment

-ZMrliCIJQAD &P

(17&) jVl

+ LFz + ic + F=F-]j

+4Yr Fr.4o r FrCfl 4&YAlh
Body pitch moment

Er&C PmC'4+ LF.4g + FQ~ V4 kAY

15.



Body Yaw MoomentI
4

I (1.7c) 4- ( Cwz4-L.t O~Aý 9 ý)

5.. Total Rotational Equations S' M•otio;

The total rotational equation nbout -he roll axls ic found by equnaing

the (- termi) in equation l'Ta to that in equation 5u and dividing by roll

moment of inertia.

'4

(18a +:; 0~ 4- t. 0c umo5 ~r -tI;xjdAt
4-- i9.';

16.
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-4 Y,.~¶ *4ý C0 -

X 0
Likewise equating the ( 1E 1 Itch term) in equation l7b to that In equation 5b
and dividing by the pitch axiis moment of inertia, produces the body pitch
axis rotational equation of motion.

Ow &S V#&4OýA0V"+0064

+ tdp04 oo Oo~*ed*A4*eA4;iP

ZVI**
+zo

Zvoo4~ 4~ 4~1t~tj
~~2`4C0 a47ft (1+CXV

(18b)~ ~ ~ ~ ~ ~ ~~~~I Tyft 
-C%#+2 00, A JO -ý w4 4



The rotational equation aboupt the body yaw axis is derived by equating the

(IM yaw term) in equation 17c to that in equation 5c and dividing by the

yaw moment of inertia.

- -J•&,.e,, .

- +) Fj-g-F. +y•.•.4y

Z.,'

++

(l)o

t I/

X1.8.



Section I1 - Translational Eountions of ?/:rion

The total translational equations of" M'tionwritten with respect to the

space fixed reference syetem are now derived. The total acceleration along

eny space fixed axis will be due to the sum of the nerodynamic force, the

weight component, the control forces, s'id the thrut tomponent nlon; that

particular axis, divided by the maps. The foree vector equations are:

F,,.p-_*... +Mq•.& + 1 c.4  ±-

Fit -' Ma-÷•. +•- +/T•
(19) r; +F> +i T{,

Ae~r cMmle Forces

By means of a vector transformation the body aerodynamic forces are

defined along space fixed axes as:

)aero aer- -I& V -. ,"L 0- --"P• )

~~ a0.(e'Ry"44ap4e

Substituting equations 8 into equations 20 results in the following:

(2 1) a F-Do COe C.o p
CMCkA~

IV



(21 b) -CwQA _446

IV

IV/
Weight

The vehicle Weig~ht, -,pace fixed coinponeritt are: (Lijnourinj, trtajectury twkct)

(22) -

Control Force

The control force compjonents along !ýpace fixed axes 1are:

(23) O(Aic +Fa)(C"04we C) AK40

("F+cX~~ ~y%~

~a~#d~6'7~7s+ac4



The tbrunt vector space fived axes components are-.

Fj- - Fr Ce'q~p Cepvý* &*44 44;Jv

FFA*op ,ý 0 Cjde~. -~~46 '"*0
+ Fr A44;M*p C"# *wtv.

Th~e TOtal Translational aquat ions

The space fixed accelerations art now presented as the sum of' components

of equAt4-N 21; 23, and 24 divided by the mass term.

'VI *

(25a) F/.3I

*(:, tFj ( A;-*%e) A~j "

(F~i ( C&.9r (44A.cu&e tA~

+ FjL.



Section III - Approximate Forms for .Equations of Nebtion.

Preliminary Simplifi cation

Although equations 18 and 25 are total equations and may be programed

for very large digital and analog computer systems, they are complex and

cumbersome and can be simplified. The first step in simplifying these equations

vould be to reduce the number iiC terms in equations 18 by assuming that products

of inertia are negligible and •t~ht Z•, •.Z* I for most symmtrical

ballistic missiles. Further simplificatton is achieved by expressing body

axes moment along the X] Y1 Z1  axeon with the following equations:

22.



(26) &-o~ M 4Zwoo~

IncorPOra~tIng the above assumption and substituting the expresgIons for MA*
MAand NOE Into equations 26, yields the folloving rotational equational

(27&)V$Ow

+ C~QAD &s +s J4A,ý

+Y+
0V

+/417

40M A II*[

J.



(A I' c0*4 + 4cP py4
X

ZPZW4 IV/ IV/~~

4r + 9A4x4~#

tr z

(27 c) +DE-y,~ z

+ 0Y~..



Perturbat ion Kquat ions

f1t perturbation equations are obtained by subtracting a standard, zero angle

of attack trajectory, from equations (25) and (27). The standard trajectory -an

be described by the folloving pearaters:

~m~a~I1d/110 4 N# u Y Z Y a 45 'W.4 ur 0

Pitch angle, q and for all but the steepestSwe9

trajctoriesi 9
and therefore:

A& .4,) 0 ~ u, a.-Ia.,X

A-a x x,
Control torces and misalignmento are zero aloo.

Substitution of these parameters into equations 25 end 27 given thie standard

trajectory equations a":

X0 +

te o
(98) O

Tft
,- -o

Subtracting equations (26) from equations 25 and 27 give the perturbation

equation, of motion as: (assumine as r a2)
(291s) ax + 4n.-9 + u

*-4Aý Z 44e4+4A6.~E

'M;
)Vr \-4&;U



(2 b) dv+R

+ ,q4m9&nW~t d CAo

+~~ L1V 4 4OCG AIJ ýOj

(29c) e-4¶
,A go~ .~ 4

+iw~e+iCte
~~~V +f Z,-,i ~ )V

(29d)

L4 C0



0 C"0A~

+ X +

A .Yv Fv +

(290) C441 +

- F~ (~'~ c~+ Cdoep u~~
F. r

27.
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+ [ /c&-cP' r* •A .,

+

I (~ F, * 9 P 4w,* Ut - rAýA

+ +o .

Linearized Perturbation Eguations

Further simplification is achieved when all angles except 0, €, SL and

can be linearized..

Incorporating this aisumption with equations 29, the linearized

perturbation equations of motion are obtained as:

(30a)



F. + F- A;4)%(~644ib

Fr +

(30b) 3%

+ +'~LA[± ~ -

(F24L~~j - ___u

(30 c)-u -~~

_ýo 64, + )P&40 "0+ eCO
)V I1



(30d) L

+ y C040ACS-p4.e;J

(.- 0 44ýv a t)J

+ r Freýy +A' O

(30e) CE

+ PAQA Q-c 2()0E44vAe
- ~ 3 ZLc4/r~r IV/4(-zV)

I. ,,,)U + .+F

X'r FrpX0 +- -) F#

A Yr



3

+ILEF + Far)x0 (Frz)+ Fawl

mi a r Az,,u+A XzF C" + 4F~r fy
- 4z •• • 4•÷ ,+-

Derivation of the coqonents.of angle of attack

The norml force, FN, can be written in space fixed components by

OVessing I/341(4'alon~g *pace fixed axes. T he final expression

is the foxlowing:

(31) jiG 3 V

S

BeosuseO is small, the comppx~ni along the axis Is approximately equal to

(ýAfj*A~C69and the j component is approximately equal to Cv,,QAky

31.



Therefore:

C#JtQ~pD'O CW LAL~q7,4,& ve Cote+

and IVI

CmU1 A OCf mr CNOGAh A,ý t-C

The Angles of Attack in pitch and yaw are defined
then as follows:

v~vxe +.Y)#4se + ACO44• " IV) """ IV/
(32)

<14 ~ ~ -nX Y, O6 - -64

The rates can be expanded to a standard rate and a perturbation rate as:

also

Substituting the above identities into equation 32 gives the. following:
(where (- , r and i/V)are treated as snmall quantities
just as Io

(33a) -V r d+J-Wgq 7_________32

323.



(33 b) Ue 4Y
ivi

Wind effects can be added to the Cp and YV equations The terms in

equations 30 that can be further reduced by substituting Gp or Wy

where possible are:

(1) [fvjiA~' + 0,~ (4.. + A cot 1

becomes Coe L X 44;m e

(2) C A A"~ N .~~4~

became 
Y

-7P

A A

IV/ v/

33.



becme 00-d'.0 )oo

becomes I- bI

(7) SC2QAE2L ( - becomes

becme X!J + op4mjoeo 9

(64)-- :z(C

(7) beoe-C~4Q

V, Ir (V1



(34c) 4-. /d~)-6~~ v~~L

7n

(34d) *-js e

_b.[-F.~o~ + F. 4F 4(•'S FrQ8

(34e) 19g~

+ y~ .i..(4f&o4.+ Y44i4)

+ Si.Q4D fcr -cp I

+ý F.+F)+ C.

.- Fr . +rrx,~ &W'4IJ
Fr +



+~Og +. [ &4iJ4 -410 eo7
+4~[CF.+ .) (F. + Fj)4

~Fr'dif4oFr+0& + ) reJ4f=o
r

(34g) + It -Kf L A,ý ~i4le +4At &W49

a4 Y e'd-jY
Section IV -Body Moment Derivation B

The body moments as exprerised in equations 3 can be equated to the

respective applied moments of equoitions 17 to give the following equations:

Body Roll Moment

I-- F(dC~~"- 4 4es,
(35a) 

VI(ouA.iG.rj-46)

9IV/



Body Pitch lbot

(35b) 
b

=-A /C, rp cN Q+&aTF ~ PaR

1!- &A~ I~

]LOU Yav Nbmnt

NA~CVN-Xc [Fz+ Fxj COy~rertewut"y

+ ILI4~i
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When the corresponding standard trajectory equations are subtracted from

those in equations 35, the perturbation equations of the body moments are

obta ined.

The perturbation equations of body moments are simplified by incorporating

the same assumptions as in derivation A.

The resulting perturbation equations are:

Body roll moment

(36 a) ='

(36a) C,4FTja Ca-44i 41 iK+~ +t R-zF-P• z +AZY, F, /

A -r F, Alxi

Body pitch moment

(36b) £+dx+cpIx'r)

"+ FT AZT + (TrFre -MA•'y

38.



E-ly Yaw Moment

-xJrF.rj8y -ZYTrFr -- MA

1- CItA D e 4ý -W

whp.re t, and by have been defined pr'viously i.,;:

Qep 9 Tl +iý iv -AjC0
Iv/

IV/

vi -V v-).
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Nome nc latcure

Symbol Definition Units

A Missile reference area M2

CN1  Gradient of the normal force coefficient 1/RAD

Cm Normal force coefficient

Do Axial drag term kg

D Reference diameter of missile M

Fy Aerodynamic normal force Kg

7 mero Total aerodynamic force Kg

Fe Thrust of each control member Kg

F? Engine thrust vector Kg

F(X, T, Z) Force with compoments in X, Y, Z space axes
system Kg

- Axial distance between the center of gravity

and the center of pressure of the body M

SAcceleration due to gravity m/sec 2

h Distance of control force from body fixed
longitudinal axis M

hx, Moment of momentum about body roll axis Kg M sec

by Moment of momentum about body pitch axis Kg M Bec

hi Moment of momentum about body yaw axis Kg M sec

Ixf Moment of inertia about body roll axis Kg M sec2

2Iy" Moment of inertia about body pitch axis Kg M sec

I3, Moment of inertia about body yaw axis Kg M sec 2

Jxy Product of inertia about body pitch axis Kg M sec 2

jx• Product of inertia about body yaw axis Kg M sec 2

J Product of inertia about body roll axis Kg 14 sec 2

p Body roll rate rad/sec

41.



q Body pitch rate rad/sec

r Body yaw rate rad/Sec

M Moment Kg N

Maero Total aerodynamic body moment Kg M

NCF Moment due to the control system Kg M

WTh Moment due to thrust vector misalignment Kg M

Mg Missile weight vector Kg

M Mass of the missile Kg sec2 /M

14dx Damping :oMxent alotLg body roll axis Kg M

Ndy Damping moment along bcdy pitch Fixis Kg N

Ndz Damping, moment along body yaw axis Kg M

Dynamic pressure Kg/M2

Ro Mean radius of earth M

R Distnnce from the center of the earth to the
missile CG. 1

Rin Initial distance from the center of the earth M.
to the missile CO.

rT Distance from body center of gravity to ap-
plication of thrust vector M

I. Unit vector along space fixed X axis

Unit vector along space fixed Y axis

k Unit vector along space fixed Z axis

I' Unit vector along body fixed X axis

1d Unit vector along body fixed Y axis

ki Unit vecto' along body fixed Z axis

Eulerian ,igrleE of rotation of the body axes
around the• X, Y, Z ,;pace fixed axes system rad

Angle at the rarth's center between initial
SL local vertical Rnd the local vertical at any time rad

1ýý .



Thrust vector misalignment antles (see diagram 2) rad.

" Standard trajectory Euler pitch engle rad.

STotal ergle of attack red.

Comnponents of OC In the pitch and yaw planes
respectively rad.

5 Angle between the original local vertical and
T the velocity vector rad.

)e'r Distance from body C.C. to application of thrust
vector parallel to the longitudinal body axis. M

X1. Distance along the body longitudinal axis to
the control force station from the body CO. N

V Missile velocity M/sec

Xs' Y8 , Zi Space fixed standard trajectory velocities M/sec

X, Y, Z Body Eulerian axes system

X, Y, Z Space fixed axes system

AYT, A ZT Displacement of the thrust vector in the
body Y' and Z directions respectively (see
diagram 2) H

CrY Displacement of the center of pressure on
the Y axis N

CPz Displacement of the center of pressure on
the Z axis M

Ji ].



Moments of Momentum Referred to Moving Axis
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Figure 1
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Aerodynamic Force
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